
Week 3 - Friday

 What did we talk about last time?
 Control flow
 Selection
 if statements
 switch statements

 Loops
 while
 for
 do-while

 Common loop errors

Unix was not designed to stop its users from doing stupid
things, as that would also stop them from doing clever
things.

Doug Gwyn

 The break command is a necessary part of the functioning of a switch statement
 But, it can also be used to jump out of a loop
 Whenever possible (i.e. always), it should not be used to jump out of a loop
 Everyone once in a while, it can make things a little clearer, but usually not
 Loops should have one entry point and one exit

for (int value = 3; value < 1000; value += 2)
{

…
if (!isPrime(value))

break;
}

for (int value = 3; value < 1000 && isPrime(value); value += 2)
{

…
}

 The continue command is similar to the break command
 It will cause execution to jump to the bottom of the loop
 If it is a for loop, it will execute the increment
 For all loops, it will return to the top if the condition is true
 It makes things easier for the programmer up front, but the

code becomes harder to follow
 The effect can be simulated with careful use of if statements

 A goto command jumps immediately to the named label
 Unlike break and continue, it is not a legal command in Java
 Except in cases of extreme (EXTREME) performance tuning, it

should never be used
 Spaghetti code results

for (int value = 3; value < 1000; value += 2)
{

if (!isPrime(value))
goto stop;

}
printf("Loop exited normally.\n");
stop:
printf("Program is done.\n");

 Read in a series of numbers and output the smallest

 Write a loop that counts the number of digits in a number
 Hint: Keep dividing the number by 10 until you get 0

 A regular number is one divisible by only 2, 3, and 5
 Print out the first 50 regular numbers:
 1 2 3 4 5 6 8 9 10 …

 A system call is a way to ask the kernel to do something
 Since a lot of interesting things can only be done by the

kernel, system calls must be provided to programmers via an
API

 When making a system call, the processor changes from user
mode to kernel mode

 There's a fixed number of system calls defined for a given
system

 The most common implementation of the Standard C Library
is the GNU C Library or glibc

 Some of the functions in the glibc perform systems calls
and some do not

 There are slight differences between the versions of the
glibc
 Microsoft also has an implementation of the Standard C Library that

doesn't always behave the same

 It turns out that there are two kinds of output to the terminal
 stdout (where everything has gone so far)
 stderr (which also goes to the screen, but can be redirected to

a different place)
 The easiest way to use stderr is with fprintf(), which

can specify where to print stuff

fprintf(stderr, "Going to stderr\n!");
printf("Going to stdout\n!");

 When you redirect stdout, stderr still goes to the screen

 If you want to redirect stderr to a file, you can do that as
well with 2>

./program > out.file
Going to stderr.

./program > out.file 2> error.log

 There are no exceptions in C
 Instead, when a system call fails, it usually returns -1
 To find out why the system call failed
 First, make sure you #include <errno.h>
 Then check the value of the integer errno in your program after the

system call fails
 Use the man pages to determine what a given value of errno means

 The perror() function is often used to print errors instead of
printf()
 It sends the output to stderr instead of stdout and then prints a

message based on errno

#include <stdio.h>
#include <fcntl.h>
#include <errno.h>
int main(){

int fd = open("eggplant.txt", O_WRONLY | O_CREAT | O_EXCL);
if (fd == -1) {

perror("Failure to create file");
if(errno == EACCES)

fprintf(stderr, "Insufficient privileges\n");
else if(errno == EEXIST)

fprintf(stderr, "File already exists\n");
else

fprintf(stderr, "Unknown error\n");
exit(EXIT_FAILURE);

}
return 0;

}

 C has a feature called typedef which allows a user to give a
new name to a type

 System types are often created so that code is portable across
different systems

 A common example is size_t, which is the type that
specifies length
 It's usually the same as unsigned int

 There are named types for process IDs (pid_t), group IDs
(gid_t), user IDs (uid_t), time (time_t), and many others

 Functions

 Read K&R chapter 4
 Keep working on Project 2

	COMP 2400
	Last time
	Questions?
	Project 2
	Quotes
	Bad Things
	break
	continue
	goto (a four letter word)
	Loop practice
	More loop practice
	Even more loop practice
	Systems Programming
	System calls
	glibc
	Screen output
	Redirecting streams
	Handling system errors
	Error handling example
	System types
	Upcoming
	Next time…
	Reminders

